TDA Progress Report 42-78

M. J. Grimm

Communications Systems Research Section

An algorithm was designed for a wire list net sort problem. A branch and bound
algorithm for the metric traveling salesman problem is presented for this. The algorithm
is a best bound first recursive descent where the bound is based on the triangle inequality.
The bounded subsets are defined by the relative order of the first K of the N cities (i.e.,
a K city subtour). When K equals N, the bound is the length of the tour. The algorithm is
implemented as @ one page subroutine written in the C programming language for the
VAX 11/750. Average execution times for randomly selected planar points using the
Euclidean metric are 0.01, 0.05, 0.42, and 3.13 seconds for ten, fifteen, twenty, and
twenty-five cities, respectively. Maximum execution times for a hundred cases are less
than eleven times the averages. The speed of the algorithm is due to an initial ordering
algorithm that is a N squared operation.

The algorithm also solves the related problem where the tour does not return to the
starting city and the starting andfor ending cities may be specified. The algorithm can
easily be extended to solve a nonsymmetric problem satisfying the triangle inequality.

April—June 1984

A Simple Algorithm for the Metric Traveling Salesman Problem

I. Introduction

The Digital Projects Group uses an in-house development
aid program (Ref. 3) for specifying the interconnections of the
1/O pins of integrated circuits placed on wire wrap boards. The
program produces nets of (x,) coordinates of points that
must be interconnected. The coordinates are the locations of
socket pins upon which at most two wires may be placed. An
insulated wire electrically connects two socket pins. The
length of a net connecting the NV socket pins is the sum of the
effective lengths of the N~ 1 wires connecting pairs of points
in that net. When a wire wrap machine connects the point

108

(x1, y1) with the point (x2, 2), the effective length of the
wire is {x1-x2| + [y1~- y2|. It is desirable to minimize the
length of the nets.

For a typical logic design, a board has two thousand nets,
with each net containing an average of three points. Approxi-
mately eight percent of the nets have ten or more points, and a
few exceed fifteen points. With such small nets, it would seem
that a simple algorithm could be specified that finds minimum
length nets using a reasonable amount of computer time. The
algorithm to be presented satisfies the requirement, and also

solves the metric traveling salesman problem (TSP). It also
allows one or both end points of the net to be specified,
facilitating the routing of electrically terminated nets.

II. The Combinatorial Problem

The TSP can be defined as follows. Given an N by N
matrix D of non-negative integers; find an order vector O
such that

N-1
D(O[N],0[1]) + } D(O[/],0[/ +1])

I=}

is minimal. The order vector may be any permutation of the
numbers one through N. If D[/, J] = D{J, I} then the problem
is called the symmetric TSP. If, additionally, D has a zero diag-
onal and satisfies the triangle inequality (D[Z, J]1 < D[], K] +
" D[K, J]) the problem is called the metric TSP. If the first term
in the minimization equation is omitted, the salesman does not
have to return home, and the problem becomes the net sort
problem, The distance defined in the introduction is a metric;
so that problem is a metric net sort problem.

The algorithm to be presented solves both the metric TSP
and the net sort problem. It can easily be extended to solve a
nonsymmetric problem given that the triangle inequality
holds.

lll. The Algorithm

Bently (Ref. 2) describes approximate solutions to the TSP
that are feasible for N =1000. Smith (Ref. 4) defines the
branch and bound algorithm but does not give execution
times. Bellmore and Malone (Ref. 1) give execution times for
random Fuclidean problems that are three orders of magnitude
inferior to the algorithm to be presented. The algorithm is a
simple application of branch and bound using the triangle
inequality. The novelty of the algorithm is a worst possible
ordering presort which enhances execution times by about
three orders of magnitude for V= 20.

The branch and bound algorithm (Refs. 1 and 4) can be
defined recursively as follows. Given a set of nets and an
upper bound (current minimum) on the absolute minimum
length net: Partition the set into subsets and compute lower
bounds on the lengths of the nets in each subset. If the lower
bound of a subset is not less than the current minimum, dis-
card that subset because it cannot contain a net shorter than
the current minimum. If the lower bound of a subset is less
than the current minimum and the subset contains more than
one net, explore that subset. Otherwise, if the set has only one

net, then the length of that net becomes the current minimum,
and that net is saved as a potential minimum length net. The
algorithm terminates when the set has been explored, and the
potential minimum length net is then the minimum length net.

The algorithm to be presented is a best bound first algo-
rithm; that is, when a set is partitioned, the first subset to be
explored is the subset with the smallest lower bound. The
algorithm also has the property that subsets are mutually
exclusive and collectively exhaustive and that the subsetting
process ultimately yields a subset with just one net in it, whose

Tength is the lower bound.

The algorithm computes an initial ordering for the points,
and it labels them one through V. The initial ordering will be
described in the next paragraph; this one describes the subsets
and bounds used by the algorithm. The subsets are defined by
the relative order of the first K points in the net, and the lower
bounds are computed directly from the triangle inequality.
The depth of a subset is defined to be the number of points
considered (X). A convenient label for a depth K subset is its
K point order vector. For example, the depth three subset
1-3-2 is the set of all nets for which point three is between
points one and two. If N is greater than three, 1-3-2 can be
partitioned into the four depth four subsets: 4-1-3-2, 1-4-3-2,
1-3-4-2, and 1-3-2-4. For the net sort problem, the lower
bound for the set 1-3-2 is D[1, 3] + D[3, 2]. For the TSP the
lower bound is D[1,3] +D[3,2] +D[2,1]. The triangle
inequality guarantees that no net in the subset is shorter than
the lower bound. Moreover a depth IV subset contains just one
net whose length is the lower bound.

The algorithm consists of recursively partitioning depth K
subsets into depth K + 1 subsets until either the lower bound
exceeds the current minimum or a new current minimum is
found. The speed of the algorithm is found to be extremely
data sensitive, and an initial ordering of the points is required.

- In order to maximize the lower bounds of depth K subsets,

and hence tend to eliminate subsets without having to parti-
tion them, the first K points should be chosen to be maximally
separated. This is accomplished with the following presort
algorithm. For the net sort problem, if both end points are
specified, they are labeled one and two. If one end point is
specified, it is labeled one, and point two is the one farthest
from it. Otherwise, and for the TSP, the first two points are
chosen as the ones farthest apart. Point P{J + 1] is chosen as
a point not already chosen which is the farthest distance from
all of the J points already chosen. That is, point P[J + 1] is
the point K such that: MIN(D[P[I],K]: I=1,...,J) is
maximal for 1<K<N and X not in P[S]: S=1,...,J.

This initial ordering is a NV squared operation and signifi-
cantly enhances the execution speed of the algorithm.

109

The branch and bound algorithm is applied to the presorted
points and is as follows. Start with the set of all nets to be con-
sidered, the lower bound for the set, and a current minimum
of infinity. From the set’s lower bound, compute lower bounds
for each one deeper subset. Record the two best (smallest)
lower bounds. If the best lower bound is not less than the cur-
rent minimum, discard the entire set because it cannot contain
a net shorter than the current minimum. Otherwise if the sub-
set depth is &V, record the single net in the best subset and set
the current minimum to be the subset’s lower bound (length);
and the set has been explored. Otherwise if the best subset’s
lower bound is less than the current minimum, explore it.
Having explored the best subset, if the second best subset’s
lower bound is not less than the current minimum, the entire
set has been explored. Otherwise, successively explore each
subset whose lower bound is less than the current minimum,
The algorithm terminates when the initial set has been explored.
At this time, the current minimum is the length of an absolute
minimum length net, and the recorded net is one of the abso-
lute minimum length nets.

IV. The Computer Realization of the
Branch and Bound Algorithm

The recursive algorithm is easily implemented as a recursive
subroutine (SUBSET) whose arguments are as follows:

LP1 The depth (L+1) of the resulting one deeper

subsets

LEN The lower bound of the depth L subset to be
explored

D Row LP1 of the distance matrix

The subset being explored is globally defined by the singly
linked list LINK. For the TSP, the initial set to be explored
is 1-2-3 which is defined as a circular list (LINK[1] =2;
LINK[2] =3; LINK[3] =1). Other global variables used by
SUBSET are as follows:

N The number of points in a net
MIN
WIN

The current minimum

The linked representation of the current minimum
net.

The increase in lower bound of the depth LP1 subset formed
by placing point LP1 between points I and LINK[I] is

DI[I, LP1] +D[LP1, LINK[I]] —D[LLINK[I]]

To facilitate the recursive computation of lower bounds in the
net sort problem, the distance matrix is augmented with a

110

column of zeros so that D[J, 0] =0 for all J. For the net sort
problem, the initial set to be explored is 1-2 which is defined
by

LINK[0] = 2;LINK[2] = I;LINK[1] =0

Notice that the lower bound equation is now also valid for end
points of the net. The valid indices (I) for the net sort problem
with S preselected end points are S, . .., L. The valid indices
for the TSPare 1,..., L.

For a symmetric distance matrix, only one row of D is
required to compute the increase in lower bound provided
that D[LLINK[I]] is maintained. DL[I] is defined to be
D[LLINK[I]]. Now the lower bound equation becomes

D[I] +D[LINK[I]] - DL{]

where D[J] is D[LP1, J];i.e., D is now just a row of the dis-
tance matrix.

To explore the depth L + 1 subset formed by placing L + 1
between I and LINK[I], the required updates to LINK and DL
are

LK = LINK[I]
LINK[I] = LP1
LINK[LP1] = LK
DT = DL{I]
DL[I] = D[I]

DL[LP1] = D[IK]

To restore DL and LINK to the depth L subset,

DT
LK

DL{I]
'LINK[I]

The C language realization of this algorithm is given in
Fig. 1.

V. Example of Algorithm Execution

Consider the five-point net with its corresponding distance
matrix in Fig, 2. The problem to solve is the net sort with no
preselected points. The initial ordering algorithm gives the
points labeled as shown. The initial set 2-1 is partitioned and
lower bounds are calculated until a new current minimum of
7 is generated from 5-2-3-1-4. Sets 2-3-1-4 and 2-3-1 both
have second best lower bounds not greater than the current

mjnimum, so they have been explored. The second best subset VIi. Execution Times

of 2-1 yields a new current minimum of 6 for 3-2-5-4-1. The

rest of the subsets fail the second best test and the algorithm Table 1 gives average and maximum execution times for
terminates. In this example, only twenty-one lower bounds randomly selected planar points using the Euclidean metric
were computed to determine the minimum of sixty (5!/2) for the TSP. These measurements were made on a VAX
possible nets. 11/750 running UNIX.

References

1. Bellmore, M. and Malone, J. C., Pathology of Traveling-Salesman Subtour Elimination
Algorithms. Oper. Res. 19(1971), 278-307.

2. Bently, J. L., A Case Study in Applied Algorithm Design, IEEE Computer 17:2, Feb.
1984, 75-87.

3. Lushbaugh, W. A., Quicklist — The Basis for a Computer Aided Design System. DSN
Progress Report 42-58, 67-71, May-June 1980, Jet Propulsion Laboratory, Pasadena,
California.

4, Smith, D. R., Random Trees and the Branch and Bound Procedures. J. ACM 31 (Jan,
1984) 163-~188.

111

Table 1. Execution times

Number Number
of of Average, s Maximum, s
Points Cases
10 100 0.01 0.07
15 100 0.05 0.23
20 100 0.42 3.87
25 - 100 3.13 33.55
30 25 55.36 400.37
35 14 263.63 1786.93

112

subset(lpi,len,d>
1pl,len,*d;

int ddCSIZ211,i,1lk,dt,1lim,1im2;
forC(lim=11im2=30000000, 1k=5; 1k<1lpl;lk++)

if((ddl1kl=dl1kI+dL1ink(1k11=-d1L1k1)<1im2) "

ifcddl1lkI<1im) €

izlk:
lim2=1im;
lim= ddC1lkl;
)
else

lim2=dd[1k];
ifC(lim+=len)>z=min)
return:
l1k=1inkCil:
link[13=1p1;
link[1lp1l=1lk3;
if(lpl=z=n){
for(dt=0:;dt<{=n;dt++)
winldtl=link(dtl;
linkCil=1k;

minzlim;
return;
¥
dt=dlCil;

dllil=dlil;
diflip1l=zdllk];
subset(lpl+i,lim,d+n+1)3;
difilz=dt;
linkLilz1lk;
if(Climz=min~len)<=z=1im2)
return:;
for(ddlil=30000000,izs;i<lpl;i++)
if(ddl13<1imd)<{
lk=1inklil;
linkCil=1lpl:;
link[1lp1l=z1lk;
dt=dlLil;}
difiY=dLil;
d1Clp1l=dl1k];
subset(lpi+i, len+ddfil,d+n+1);
difil=dt;
1linkCLil=1k;

Fig. 1. The C Language realization of branch and bound aigorithm

113

012345
5
4 2 1 005 41 4
II Ia 2 0501 41
NET 3 04105 2
4 01 4503
’ 5 0412230
AUGMENTED DISTANCE
MATRIX (D)
LOWER CURRENT DELTA LOWER BOUND
SUBSET BOUND MINIMUM 01 2 3 4
21 5 1 40
2u3-1 5 418 2
2-3-1~4 6 16 22 3
5e2n3e]~4 7 7
3-2-1 6 5108
324~ 6 2 402 6
3m2m5mde] 6 6

Flg. 2. Example of algorithm executlon for a five-point net and its
corresponding distance matrix

114

